
Hands-on introduction to Rust
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Agenda (1/2)
1. Cargo

2. Basics and documentation

3. Iterating

4. Making our own types

5. Strings and user input
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Agenda (2/2)
1. Error handling

2. Modules

3. FFI

4. More?
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Stack Over�ow
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Rust Playground

play.rust-lang.org
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Jake Goulding
Rust infrastructure team

Working on a Rust video course for Manning

A handful of crates

Help out with AVR-Rust
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Who are you?
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Cargo
Package manager

Build tool

Code

Tests

Docs
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Cargo
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Cargo
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Hello, world!
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Printing values
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Comments
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API Documentation
https://doc.rust-lang.org/

Click on "Standard Library API Reference"
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Functions
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Functions
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Variables
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Variables
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Variables are immutable by default
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Types
: unsigned 32-bit integer

: signed 32-bit integer

: floating point number

 and/or : more on these later

: a boolean

: a tuple
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Type inference / explicit types
Most of the time, you don't need to specify the type

You can choose to if it helps you learn
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Exercise
Create a  function

Print out the result of calling the function with 
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One answer
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Another answer
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Vectors
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Iterating
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Iterating
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Iterators
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Iterators
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Iterators
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Iterators
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Iterators
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Exercise
Print out the values from 0 (inclusive) to 100 (exclusive)

That are divisible by 3

And divisible by 7
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Exercise
Print out the values from 0 (inclusive) to 100 (exclusive)

That are divisible by 3

And divisible by 7

Instead of printing them out, try adding them up
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One answer
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Another answer
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Structs
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Enums
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Exercise
Create  and  structs

Create a function that converts  to 
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Exercise
Create  and  structs

Create a function that converts  to 

Instead of a struct, do it with a single enum
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One answer



Methods
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Methods
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Exercise
Create a method that converts  to 
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An answer



Strings
Rust has two primary string types:

Owns the data

Can be extended or reduced

References existing data

Cannot change length
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Strings
Can convert from a  to a  via 

Can get a  from a  via 
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Exercise
Create a function that prints a number

Multiples of three print “Fizz” instead of the number

Multiples of five print “Buzz” instead of the number

Multiples of both three and five print “FizzBuzz”

Call the function with the numbers from 1 to 100

Change the function to return a string instead of printing
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One answer
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Reading user input
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Parsing strings
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Exercise
Read user input of a temperature and convert it
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Exercise
Read user input of a temperature and convert it

Ask if it's Celcius or Fahrenheit
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Handling errors
Rust does not have exceptions

You can:

return an error

panic
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Returning errors
 is an enum

Can't currently be used in  or in tests
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Chained error returns
The  operator is syntax sugar for returning an error or
getting the success value.
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Panicking
Tears down the current thread

If it's the main thread, program exits

Safe to do, in Rust terms

When to panic:

Great for prototyping and "learning Rust" workshops

OK for an executable

Not good for a library

Unless there's an error from the library writer
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Explicit panics
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Implicit panics
 / 

 / 

Indexing out of bounds ( )
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Exercise
Write a function that adds two  values

If either of the values are greater than , return an error

If the sum is greater than , return an error

Call the function and panic if it fails

Hints
Write a helper function for the repeated logic and use 

Use  as your returned error type and its value
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One answer
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Modules
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Visibility
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Modules in �les
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Modules in �les
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Exercise
Create a function which calls two others. The parent function should be called
in 

71 / 88



FFI
Use C code from Rust

There's a lot of battle-tested code out there
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Target library
Tracks a persons name and age

Look at  and 
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Sca�olding
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Exercise
Add extern declarations for:
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One answer
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C strings

(capacity, length, data pointer)
Owns the data

(length, data pointer)
Borrows the data

(data pointer)
Owns  borrows the data
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Interoperating with C strings

counterpart to 

: convert to 

counterpart to 

: convert to 

78 / 88



The  keyword
When defining a function

When calling unsafe functions

When defining or implementing traits
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 functions
The code cannot  guarantee it is safe

Often based on some choice of arguments

Sometimes based on pre-existing state
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 blocks
Calling this set of unsafe functions is always safe
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Powers of the  keyword
Dereferencing a raw pointer

Reading or writing a mutable static variable

Calling an unsafe function

All foreign functions are unsafe

Implementing an unsafe trait

Warning
Not permitted to break any of Rust's guarantees

Up to programmer to verify, not the compiler
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Exercise
Create a person via 

Print out result of 

Optional: clean up memory via 

Hints
Will use  or 

Will use  blocks

83 / 88



One answer
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Exercise
Create a nicer Rust wrapper struct called .
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Automatically freeing resources
 is a trait known to the compiler

Called when a type goes out of scope
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Exercise
Convert the wrapper struct to use 
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Extra ideas
Traits

Generics
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