
Hands-on introduction to Rust

1 / 88

Agenda (1/2)
1. Cargo

2. Basics and documentation

3. Iterating

4. Making our own types

5. Strings and user input

2 / 88

Agenda (2/2)
1. Error handling

2. Modules

3. FFI

4. More?

3 / 88

4 / 88

Stack Over�ow

5 / 88

Rust Playground

play.rust-lang.org

6 / 88

Jake Goulding
Rust infrastructure team

Working on a Rust video course for Manning

A handful of crates

Help out with AVR-Rust

7 / 88

Who are you?

8 / 88

Cargo
Package manager

Build tool

Code

Tests

Docs

9 / 88

Cargo

10 / 88

Cargo

11 / 88

Hello, world!

12 / 88

Printing values

13 / 88

Comments

14 / 88

API Documentation
https://doc.rust-lang.org/

Click on "Standard Library API Reference"

15 / 88

Functions

16 / 88

Functions

17 / 88

Variables

18 / 88

Variables

19 / 88

Variables are immutable by default

20 / 88

Types
: unsigned 32-bit integer

: signed 32-bit integer

: floating point number

 and/or : more on these later

: a boolean

: a tuple

21 / 88

Type inference / explicit types
Most of the time, you don't need to specify the type

You can choose to if it helps you learn

22 / 88

23 / 88

24 / 88

Exercise
Create a function

Print out the result of calling the function with

25 / 88

One answer

26 / 88

Another answer

27 / 88

Vectors

28 / 88

29 / 88

30 / 88

Iterating

31 / 88

Iterating

32 / 88

Iterators

33 / 88

Iterators

34 / 88

Iterators

35 / 88

Iterators

36 / 88

Iterators

37 / 88

Exercise
Print out the values from 0 (inclusive) to 100 (exclusive)

That are divisible by 3

And divisible by 7

38 / 88

Exercise
Print out the values from 0 (inclusive) to 100 (exclusive)

That are divisible by 3

And divisible by 7

Instead of printing them out, try adding them up

39 / 88

One answer

40 / 88

Another answer

41 / 88

Structs

42 / 88

Enums

43 / 88

Exercise
Create and structs

Create a function that converts to

44 / 88

Exercise
Create and structs

Create a function that converts to

Instead of a struct, do it with a single enum

45 / 88

One answer

Methods

47 / 88

Methods

48 / 88

Exercise
Create a method that converts to

49 / 88

An answer

Strings
Rust has two primary string types:

Owns the data

Can be extended or reduced

References existing data

Cannot change length

51 / 88

Strings
Can convert from a to a via

Can get a from a via

52 / 88

Exercise
Create a function that prints a number

Multiples of three print “Fizz” instead of the number

Multiples of five print “Buzz” instead of the number

Multiples of both three and five print “FizzBuzz”

Call the function with the numbers from 1 to 100

Change the function to return a string instead of printing

53 / 88

One answer

54 / 88

Reading user input

55 / 88

Parsing strings

56 / 88

Exercise
Read user input of a temperature and convert it

57 / 88

Exercise
Read user input of a temperature and convert it

Ask if it's Celcius or Fahrenheit

58 / 88

Handling errors
Rust does not have exceptions

You can:

return an error

panic

59 / 88

Returning errors
 is an enum

Can't currently be used in or in tests

60 / 88

Chained error returns
The operator is syntax sugar for returning an error or
getting the success value.

61 / 88

Panicking
Tears down the current thread

If it's the main thread, program exits

Safe to do, in Rust terms

When to panic:

Great for prototyping and "learning Rust" workshops

OK for an executable

Not good for a library

Unless there's an error from the library writer

62 / 88

Explicit panics

63 / 88

Implicit panics
 /

 /

Indexing out of bounds ()

64 / 88

Exercise
Write a function that adds two values

If either of the values are greater than , return an error

If the sum is greater than , return an error

Call the function and panic if it fails

Hints
Write a helper function for the repeated logic and use

Use as your returned error type and its value

65 / 88

One answer

66 / 88

Modules

67 / 88

Visibility

68 / 88

Modules in �les

69 / 88

Modules in �les

70 / 88

Exercise
Create a function which calls two others. The parent function should be called
in

71 / 88

FFI
Use C code from Rust

There's a lot of battle-tested code out there

72 / 88

Target library
Tracks a persons name and age

Look at and

73 / 88

Sca�olding

74 / 88

Exercise
Add extern declarations for:

75 / 88

One answer

76 / 88

C strings

(capacity, length, data pointer)
Owns the data

(length, data pointer)
Borrows the data

(data pointer)
Owns borrows the data

77 / 88

Interoperating with C strings

counterpart to

: convert to

counterpart to

: convert to

78 / 88

The keyword
When defining a function

When calling unsafe functions

When defining or implementing traits

79 / 88

 functions
The code cannot guarantee it is safe

Often based on some choice of arguments

Sometimes based on pre-existing state

80 / 88

 blocks
Calling this set of unsafe functions is always safe

81 / 88

Powers of the keyword
Dereferencing a raw pointer

Reading or writing a mutable static variable

Calling an unsafe function

All foreign functions are unsafe

Implementing an unsafe trait

Warning
Not permitted to break any of Rust's guarantees

Up to programmer to verify, not the compiler

82 / 88

Exercise
Create a person via

Print out result of

Optional: clean up memory via

Hints
Will use or

Will use blocks

83 / 88

One answer

84 / 88

Exercise
Create a nicer Rust wrapper struct called .

85 / 88

Automatically freeing resources
 is a trait known to the compiler

Called when a type goes out of scope

86 / 88

Exercise
Convert the wrapper struct to use

87 / 88

Extra ideas
Traits

Generics

88 / 88

